Build a Chatbot with Local LLM (Falcon 7B) and LangChain
Can you achieve ChatGPT-like performance with a local LLM on a single GPU?
8 min readJul 16, 2023
Mostly, yes! In this tutorial, we’ll use Falcon 7B with LangChain to build a chatbot that retains conversation memory. We can achieve decent performance by utilizing a single T4 GPU and loading the model in 8-bit (~6 tokens/second). We’ll also explore techniques to improve the output quality and speed, such as:
- Stopping criteria: detect the start of LLM “rambling” and stop the generation
- Cleaning output: sometimes LLMs output strange/additional tokens, I’ll show you how you can clear those from the output
- Store chat history: we’ll use memory to make sure your LLM remembers the conversation history
In this part, we will be using Jupyter Notebook to run the code. If you prefer to follow along, you can find the notebook on GitHub: GitHub Repository
Read the full tutorial on MLExpert.io